An information-theoretical lineshape: general case

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1973 J. Phys. A: Math. Nucl. Gen. 6906
(http://iopscience.iop.org/0301-0015/6/7/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:47

Please note that terms and conditions apply.

An information-theoretical lineshape: general case

G Z Czajkowski \dagger
Institute of Physics, Nicholas Copernicus University, Torun, Poland

Received 30 November 1972, in final form 1 February 1972

Abstract

Following Powles and Carazza, the information-theoretical method is used to obtain the most probable spectral distribution given only a knowledge of a finite number of moments of the line. An approximate method is given to obtain Lagrange undetermined multipliers. Examples of application of the method are given.

1. Introduction

Powles and Carazza (1970) applied the information-theoretical method to the problem of the absorption lineshape in nuclear magnetic resonance. Assuming that a finite number of moments of the line is given they obtained a most probable lineshape in the form

$$
\begin{equation*}
p(x)=Z^{-1} \exp \left(-\sum_{k=1}^{2 n} \lambda_{k} x^{k}\right), \tag{1}
\end{equation*}
$$

where x denotes the frequency, and Z is the normalization constant

$$
\begin{equation*}
Z=Z\left(\lambda_{1}, \ldots, \lambda_{2 n}\right)=\int_{-\infty}^{+\infty} \exp \left(-\sum_{k=1}^{2 n} \lambda_{k} x^{k}\right) \mathrm{d} x . \tag{2}
\end{equation*}
$$

$\lambda_{1}, \ldots, \lambda_{2 n}$ are Lagrange undetermined multipliers which can be calculated from the equation

$$
\begin{equation*}
M_{k}=-\frac{\partial \ln Z}{\partial \lambda_{k}}, \quad k=1, \ldots, 2 n \tag{3}
\end{equation*}
$$

where M_{k} are moments of the line. The difficulty consists now in the calculation of the λ_{k} 's from equation (3). Powles and Carazza gave a method for obtaining λ_{2} and λ_{4} for a symmetrical lineshape:

$$
\begin{equation*}
p(x)=Z^{-1} \exp \left(-\lambda_{2} x^{2}-\lambda_{4} x^{4}\right) \tag{4}
\end{equation*}
$$

for M_{2} and M_{4} only known (in this case $M_{1}=M_{3}=0$). In what follows we give an approximate method of calculation of the λ_{k} 's for the general case of the distribution (1), that is for $M_{1}, M_{2}, \ldots, M_{2 n}$ lines ($n=2,3, \ldots$; for $n=1$ one obtains the gaussian distribution). In particular, approximate formulae for $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ for $M_{1}, M_{2}, M_{3}, M_{4}$ lines and $\lambda_{2}, \lambda_{4}, \lambda_{6}$ for M_{2}, M_{4}, M_{6} lines are given. For M_{2}, M_{4} lines the results are compared with those of Powles and Carazza.
\dagger Now at Institut für Theoretische Physik der Rheinisch-Westfalischen Technischen Hochschule Aachen, D-5100 Aachen, Templergraben, Germany.

2. Calculation of Lagrange undetermined multipliers

Following Powles and Carazza we assume that a nuclear magnetic resonance absorption lineshape $p(x)$ is a probability distribution in frequency x. The k th moment of the lineshape is defined as

$$
\begin{equation*}
M_{k}=\int_{-\infty}^{+\infty} x^{k} p(x) \mathrm{d} x, \quad k=1,2, \ldots . \tag{5}
\end{equation*}
$$

The line is called symmetric when all odd moments vanish (for the detailed physical discussion cf, eg, Powles and Carazza). Assume that a finite number of moments M_{1}, \ldots, $M_{2 n}$ is known. There exists, in general, a set of distributions $p(x)$ satisfying the relations (5):
$K=K\left(M_{1}, \ldots, M_{2 n}\right)=\left\{p(x) \in W: \int_{-\infty}^{+\infty} x^{k} p(x) \mathrm{d} x=M_{k}, \quad k=1, \ldots, 2 n\right\}$
where

$$
W=:\left\{p(x): p(x) \geqslant 0, \quad \int_{-\infty}^{+\infty} p(x) \mathrm{d} x=1\right\} .
$$

The set K will be called a macrostate. The notion of a macrostate was introduced in the so called information thermodynamics (cf Ingarden and Urbanik 1962, see also, eg, Kossakowski 1969, Ingarden 1973). Suppose that there exists a distribution $p_{K}(x) \in K$ (called the most probable distribution or the representative distribution of K) such that

$$
\begin{equation*}
S\left(p_{K}\right)=-\int_{-\infty}^{+\infty} p_{K}(x) \ln p_{K}(x) \mathrm{d} x=\sup _{p \in K}\left(-\int_{-\infty}^{+\infty} p(x) \ln p(x) \mathrm{d} x\right) . \tag{7}
\end{equation*}
$$

As is well known the distribution $p_{K}(x)$ (if it exists) has the form (1) with (2) and (3). Now we calculate the Lagrange multipliers. Denoting $M_{0}=1$ and $\lambda_{0}=\ln Z$ we may rewrite the equations (3) and the normalization condition of $p(x)$ in the form

$$
\begin{equation*}
M_{i}=\int_{-\infty}^{+\infty} x^{i} \exp \left(-\sum_{j=0}^{2 n} \lambda_{j} x^{j}\right) \mathrm{d} x \quad i=0,1, \ldots, 2 n . \tag{8}
\end{equation*}
$$

Now we make use of the well known quadrature formula. Let $f(x)$ be a continuous function and assume that the integral $\int_{-\infty}^{+\infty} \exp \left(-x^{2}\right) f(x) \mathrm{d} x$ exists. Then

$$
\begin{equation*}
\int_{-\infty}^{+\infty} e^{-x^{2}} f(x) \mathrm{d} x=\sum_{k=1}^{m} A_{k}^{(m)} f\left(x_{k}\right)+R(f) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}^{(m)}=\frac{2^{m+1} m!\sqrt{ } \pi}{H_{m}^{\prime 2}\left(x_{k}\right)}, \quad R(f)=\frac{m!}{2^{m}(2 m)!} f^{(2 m)}(\eta) \tag{10}
\end{equation*}
$$

$-\infty<\eta<+\infty, H_{m}(x)$ are Hermite polynomials:

$$
\begin{equation*}
H_{m}(x)=(-1)^{m} \mathrm{e}^{x^{2}} \frac{\mathrm{~d}^{m}}{\mathrm{~d} x^{m}} \mathrm{e}^{-x^{2}} \tag{11}
\end{equation*}
$$

and x_{1}, \ldots, x_{m} are zeros of the polynomial $H_{m}(x)$. The coefficients $A_{k}^{(m)}$ are tabulated (cf, eg, Krylov 1967, pp 141-2). Suppose that functions $f(x), f^{\prime}(x), \ldots, f^{(2 m)}(x)$ are finite so that $R(f) \rightarrow 0$ for $m \gg 1$. For example, for $m=5$ we have $R(f) \sim 10^{-6} f^{(10)}(\eta)$.

Neglecting the term $R(f)$ and substituting

$$
\begin{gather*}
C_{i k}=A_{k}^{(m)} \exp \left(x_{k}^{2}\right) x_{k}^{i}=w_{k} x_{k}^{i}, \quad i=0,1, \ldots, 2 n ; \quad k=1, \ldots, m ; \tag{12}\\
f_{k}=f\left(x_{k}\right)=\exp \left(-\sum_{j=0}^{2 n} \lambda_{j} x_{k}^{j}\right) \tag{13}
\end{gather*}
$$

we rewrite equations (8) in the form

$$
\begin{equation*}
M_{i}=\sum_{k=1}^{m} C_{i k} f_{k} . \tag{14}
\end{equation*}
$$

The function $f(x)$ in (13) has at most n maxima. Our approximation will be good for $f(x)$ attaining their maximal values in the interval ($-x_{m}, x_{m}$). If $m=2 n+1$, then (14) becomes a system of $2 n+1$ linear equations for $2 n+1$ unknowns $f_{1}, \ldots, f_{2 n+1}$ which can be easily solved by the Cramer's formulae, namely

$$
\begin{equation*}
f_{k}=\frac{d_{k} \exp \left(-x_{k}^{2}\right)}{A_{k}^{(m)} V_{2 n+1}} \tag{15}
\end{equation*}
$$

where d_{k} denotes the determinant

$$
d_{k}=\left|\begin{array}{ccccccc}
1 & 1 & \ldots & 1 & 1 & 1 & \ldots \tag{16}\\
1 & 1 \\
x_{1} & x_{2} & \ldots & x_{k-1} & M_{1} & x_{k+1} & \ldots \\
x_{2 n+1} \\
\vdots & & & & & & \vdots \\
x_{1}^{2 n} & x_{2}^{2 n} \ldots & x_{k-1}^{2 n} & M_{2 n} & x_{k+1}^{2 n} & \ldots & x_{2 n+1}^{2 n}
\end{array}\right|
$$

and $V_{2 n+1}$ is the Vandermond determinant

$$
\begin{equation*}
V_{2 n+1}=\prod_{\substack{k, l=1 \\ k>l}}^{2 n+1}\left(x_{k}-x_{l}\right) . \tag{17}
\end{equation*}
$$

Note that all f_{k} 's $(k=1, \ldots, 2 n+1)$ have to be positive with respect to (13), so that the method referred to can be applied if the prescribed moments $M_{1}, \ldots, M_{2 n}$ satisfy the relations

$$
\begin{equation*}
d_{k}=d_{k}\left(M_{1}, \ldots, M_{2 n}\right)>0 \tag{18}
\end{equation*}
$$

Suppose it is satisfied. Then, substituting $B_{k}=-\ln f_{k}$, we obtain a set of linear equations for the Lagrange multipliers $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{2 n}$:

$$
\begin{equation*}
B_{k}=\sum_{j=0}^{2 n} \lambda_{j} x_{k}^{j}, \quad k=1, \ldots, 2 n+1 \tag{19}
\end{equation*}
$$

The solution of (19) has the form

$$
\begin{equation*}
\lambda_{j}=\frac{\Delta_{j}}{V_{2 n+1}}, \quad j=0,1, \ldots, 2 n \tag{20}
\end{equation*}
$$

where Δ_{j} denotes the determinant

$$
\Delta_{j}=\left|\begin{array}{cccccccc}
1 & x_{1} & x_{1}^{2} & \ldots x_{1}^{j-1} & B_{1} & x_{1}^{j+1} & \ldots & x_{1}^{2 n} \tag{21}\\
1 & x_{2} & x_{2}^{2} & \ldots x_{2}^{j-1} & B_{2} & x_{2}^{j+1} & \ldots & x_{2}^{2 n} \\
\vdots & & & & & & & \vdots \\
1 & x_{2 n+1} & x_{2 n+1}^{2} & \ldots x_{2 n+1}^{j-1} & B_{2 n+1} & x_{2 n+1}^{j+1} & \ldots & x_{2 n+1}^{2 n}
\end{array}\right| .
$$

For the polynomial $H_{2 n+1}(x), x_{n+1}=0$, so that (20) yields

$$
\begin{equation*}
\lambda_{0}=\ln Z=B_{n+1}=-\ln f_{n+1} \tag{22}
\end{equation*}
$$

One can calculate the Lagrange multipliers $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{2 n-2}$ from (20) and the remaining $\lambda_{2 n-1}$ and $\lambda_{2 n}$ from the equations

$$
\begin{equation*}
\sum_{k=1}^{2 n} k \lambda_{k} M_{k}=1 ; \quad \sum_{k=1}^{2 n} k \lambda_{k} M_{k-1}=0 \tag{23}
\end{equation*}
$$

which can be easily verified by integration by parts. In particular, for symmetric lineshapes one obtains

$$
\begin{align*}
& 2 \lambda_{2} M_{2}=1 \quad \text { for } n=1, \\
& 4 \lambda_{4} M_{4}+2 \lambda_{2} M_{2}=1 \quad \text { for } n=2, \tag{24}\\
& 6 \lambda_{6} M_{6}+4 \lambda_{4} M_{4}+2 \lambda_{2} M_{2}=1 \quad \text { for } n=3, \text { etc. }
\end{align*}
$$

The last two relations were given by Powles and Carazza (cf equations (22) and (52) of Powles and Carazza 1970). Integrating by parts the expression

$$
M_{2 n+s}=Z^{-1} \int_{-\infty}^{+\infty} x^{2 n+s} \exp \left(-\sum_{k=1}^{2 n} \lambda_{k} x^{k}\right) \mathrm{d} x
$$

one obtains the recurrence formula

$$
\begin{equation*}
M_{2 n+s}=\left(2 n \lambda_{2 n}\right)^{-1}\left((s+1) M_{s}-\sum_{k=1}^{2 n-1} k \lambda_{k} M_{k+s}\right) . \tag{25}
\end{equation*}
$$

3. Examples

For illustration of the method consider two examples.

3.1. $M_{1}, M_{2}, M_{3}, M_{4}$ lineshape

Here we have $n=2$ and

$$
\begin{array}{ll}
x_{3}=0 & A_{3}=0.945 \\
x_{4}=-x_{2}:=b=0.959 & A_{2}=A_{4}=0.393 \tag{26}\\
x_{5}=-x_{1}:=a=2.02 & A_{1}=A_{5}=0.020
\end{array}
$$

and

$$
\begin{equation*}
A_{1} \exp \left(x_{1}^{2}\right)=: w_{1}=1.282, \quad A_{2} \exp \left(x_{2}^{2}\right)=: w_{2}=0.987, \tag{26}
\end{equation*}
$$

(cf, eg, Krylov 1967, p 141, see also Abramowitz and Stegun 1965, p 924). From (15) one obtains

$$
\begin{align*}
& f_{1}=\frac{\left(M_{4}-b^{2} M_{2}\right)-a\left(M_{3}-b^{2} M_{1}\right)}{w_{1} 2 a^{2}\left(a^{2}-b^{2}\right)} \\
& f_{2}=\frac{\left(a^{2} M_{2}-M_{4}\right)+b\left(M_{3}-a^{2} M_{1}\right)}{w_{2} 2 b^{2}\left(a^{2}-b^{2}\right)} \\
& f_{3}=\frac{M_{4}-\left(a^{2}+b^{2}\right) M_{2}+a^{2} b^{2}}{a^{2} b^{2} A_{3}} \tag{27}\\
& f_{4}=\frac{\left(a^{2} M_{2}-M_{4}\right)-b\left(M_{3}-a^{2} M_{1}\right)}{w_{2} 2 b^{2}\left(a^{2}-b^{2}\right)} \\
& f_{5}=\frac{\left(M_{4}-b^{2} M_{2}\right)+a\left(M_{3}-b^{2} M_{1}\right)}{w_{1} 2 a^{2}\left(a^{2}-b^{2}\right)}
\end{align*}
$$

Suppose that the inequalities $f_{k}>0, k=1, \ldots, 5$, and $f_{3}<1$, are satisfied. Denoting $B_{k}=-\ln f_{k}$ one obtains from (20)-(22) the following formulae for $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{4}$:

$$
\begin{align*}
& \lambda_{0}=B_{3}=-\ln f_{3}, \\
& \lambda_{1}=\frac{-a^{3}\left(B_{2}-B_{4}\right)+b^{3}\left(B_{1}-B_{5}\right)}{2 a b\left(a^{2}-b^{2}\right)}, \\
& \lambda_{2}=\frac{a^{4}\left(B_{2}+B_{4}-2 B_{3}\right)-b^{4}\left(B_{1}+B_{5}-2 B_{3}\right)}{2 a^{2} b^{2}\left(a^{2}-b^{2}\right)}, \tag{28}\\
& \lambda_{3}=\frac{a\left(B_{2}-B_{4}\right)-b\left(B_{1}-B_{5}\right)}{2 a b\left(a^{2}-b^{2}\right)}, \\
& \lambda_{4}=\frac{-a^{2}\left(B_{2}+B_{4}-2 B_{3}\right)+b^{2}\left(B_{1}+B_{5}-2 B_{3}\right)}{2 a^{2} b^{2}\left(a^{2}-b^{2}\right)} .
\end{align*}
$$

Substituting the values (26) one obtains
$\lambda_{0}=1.266-\ln h_{3}$,
$\lambda_{1}=\frac{1}{12 \cdot 24}\left\{-8 \cdot 24\left(\ln h_{4}-\ln h_{2}\right)+0 \cdot 88\left(\ln h_{5}-\ln h_{1}\right)\right\}$,
$\lambda_{2}=\frac{1}{23.7}\left\{2\left(6.17+15.8 \ln h_{3}\right)-16.65\left(\ln h_{2}+\ln h_{4}\right)+0.85\left(\ln h_{1}+\ln h_{5}\right)\right\}$
$\lambda_{3}=\frac{1}{12.24}\left\{2.02\left(\ln h_{4}-\ln h_{2}\right)-0.96\left(\ln h_{5}-\ln h_{1}\right)\right\}$,
$\lambda_{4}=\frac{1}{23.7}\left\{2\left(0.08-3.16 \ln h_{3}\right)+4.08\left(\ln h_{2}+\ln h_{4}\right)-0.92\left(\ln h_{1}+\ln h_{5}\right)\right\}$,
where

$$
\begin{align*}
& h_{1}=M_{4}-2.02 M_{3}-0.92 M_{2}+1.86 M_{1}, \\
& h_{2}=-M_{4}+0.96 M_{3}+4.08 M_{2}-3.92 M_{1}, \\
& h_{3}=M_{4}-5 M_{2}+3.75 \\
& h_{4}=-M_{4}-0.96 M_{3}+4.08 M_{2}+3.92 M_{1}, \\
& h_{5}=M_{4}+2.02 M_{3}-0.92 M_{2}-1.86 M_{1} .
\end{align*}
$$

The conditions $0<f_{k}$ and $f_{3}<1$ are equivalent to

$$
\begin{equation*}
0<h_{1}, h_{2}, h_{4}, h_{5} ; \quad 0<h_{3}<3.54 \tag{30}
\end{equation*}
$$

For symmetric lineshapes $M_{1}=M_{3}=0$, so that $h_{1}=h_{5}$ and $h_{2}=h_{4}$ and the relations (29) take the form

$$
\begin{align*}
& \lambda_{0}=1.266-\ln h_{3}, \\
& \lambda_{1}=\lambda_{3}=0, \\
& \lambda_{2}=\frac{1}{11.85}\left(6.17+0.85 \ln h_{1}-16.65 \ln h_{2}+15.8 \ln h_{3}\right), \tag{31}\\
& \lambda_{4}=\frac{1}{11.85}\left(0.08-0.92 \ln h_{1}+4.08 \ln h_{2}-3.16 \ln h_{3}\right),
\end{align*}
$$

where

$$
h_{1}=M_{4}-0.92 M_{2} ; \quad h_{2}=-M_{4}+4.08 M_{2}
$$

We can also use the relations (23) or (24), respectively. We tested our method for some M_{2}, M_{4} and $M_{1}, M_{2}, M_{3}, M_{4}$ lines. The results are given in table 1 . The exact values for λ_{2} and λ_{4} were obtained by the method of Powles and Carazza. Namely

$$
\begin{equation*}
\lambda_{2}=x y, \quad \lambda_{4}=\frac{1}{2} y^{2} \tag{32}
\end{equation*}
$$

where

$$
y=\frac{M_{2}}{2 M_{4}}\left[-x+\left\{x^{2}+2\left(M_{4} / M_{2}^{2}\right)\right\}^{1 / 2}\right] .
$$

Table 1. Coefficients $\lambda_{0}, \lambda_{2}, \lambda_{4}$ for some M_{2}, M_{4} lineshapes.

	M_{2}	M_{4}	λ_{0}		λ_{2}		λ_{4}		$x=\lambda_{2} /\left(2 \lambda_{4}\right)^{1 / 2}$	
			Exact	Approx.	Exact	Approx.	Exact	Approx.	Exac	Approx.
1	1	1.79	1.43	1.88	-0.75	-1.14	0.35	0.46	-0.9	-1.2
2	1	1.93	1.29	1.65	-0.42	-0.89	0.24	0.36	-0.6	-1
3	1	2.51	1.181	1.043	0.228	0.281	0.041	0.054	1	0.7
4	1.24	3.50	1.205	1.140	0.106	0.106	0.064	0.064	0.3	0.3
5	1.22	3.50	1.219	1.126	0.150	0.200	0.045	0.036	0.5	0.7

The parameter x was obtained from the relation

$$
\begin{equation*}
\frac{M_{4}}{M_{2}^{2}}:=g(x)=3 \frac{D_{-5 / 2}(x) D_{-1 / 2}(x)}{D_{-3 / 2}^{2}(x)} \tag{33}
\end{equation*}
$$

$D_{q}(x)$ being the so called parabolic cylinder functions:

$$
D_{q}(x)=\frac{\exp \left(-\frac{1}{4} x^{2}\right)}{\Gamma(-q)} \int_{0}^{\infty} \exp \left(-x s-\frac{1}{2} s^{2}\right) s^{-q-1} \mathrm{~d} s, \quad(\operatorname{Re} q<0)
$$

(cf also Powles and Carazza 1970, equation (32)). Some values of $g(x)$ are given in table 2.

Table 2

x	0	0.1	0.2	0.3	0.4	0.5
$g(x)$	2.19	2.23	2.29	2.30	2.33	2.35
$g(-x)$	2.19	2.15	2.10	2.07	2.02	1.98
x	0.6	0.7	0.8	0.9	1.0	1.1
$g(x)$	2.40	2.43	2.46	2.48	2.51	2.53
$g(-x)$	1.93	1.88	1.84	1.79	1.75	1.70

The exact value for λ_{0} was found from the relation

$$
\lambda_{0}=\ln Z=\ln \left\{\left(2 \lambda_{4}\right)^{-1 / 4} \pi^{1 / 2} \exp \left(\frac{\lambda_{2}^{2}}{8 \lambda_{4}}\right) D_{-1 / 2}\left(\frac{\lambda_{2}}{\left(2 \lambda_{4}\right)^{1 / 2}}\right)\right\} .
$$

The functions $D_{q}(x)$ are tabulated (cf, eg, Abramowitz and Stegun 1965, p686).
For the case $M_{1}, M_{2}, M_{3}, M_{4}$ lineshape we considered the shape

$$
\begin{equation*}
p(x)=Z^{-1} \exp \left\{-\lambda\left(x^{4}-2 x^{3}+1.5 x^{2}-0.5 x\right)\right\} \sim \exp \left\{-\lambda(x-0.5)^{4}\right\} . \tag{34}
\end{equation*}
$$

We took $\lambda=0 \cdot 12$. Then

$$
\lambda_{0}=1.125, \quad \lambda_{1}=-0.05, \quad \lambda_{2}=0.18, \quad \lambda_{3}=-0.24, \quad \lambda_{4}=0.12
$$

and

$$
\begin{equation*}
M_{1}=0.5, \quad M_{2}=1.25, \quad M_{3}=1.63, \quad M_{4}=3.64 \tag{35}
\end{equation*}
$$

From (29) we obtain the approximate values

$$
\lambda_{0}=1.135, \quad \lambda_{1}=-0.058, \quad \lambda_{2}=0.24, \quad \lambda_{3}=-0.166 \quad \lambda_{4}=0.11
$$

3.2. M_{2}, M_{4}, M_{6} lineshape

Suppose that moments M_{2}, M_{4}, M_{6} of the line are given and $M_{1}=M_{3}=M_{5}=0$. The most probable lineshape will have the form

$$
\begin{equation*}
p(x)=Z^{-1} \exp \left(-\lambda_{2} x^{2}-\lambda_{4} x^{4}-\lambda_{6} x^{6}\right)=\exp \left(-\lambda_{0}-\lambda_{2} x^{2}-\lambda_{4} x^{4}-\lambda_{6} x^{6}\right) . \tag{36}
\end{equation*}
$$

We calculate the parameters $\lambda_{0}, \lambda_{2}, \lambda_{4}, \lambda_{6}$ using the method of $\S 2$. Here we have $n=3$, that is, $m=2 n+1=7$ and

$$
\begin{array}{ll}
x_{4}=0 & A_{4}=0.810 \\
x_{5}=-x_{3}=: c=0.816 & w_{3}=0.829 \tag{37}\\
x_{6}=-x_{2}=: b=1.674 & w_{2}=0.897 \\
x_{7}=-x_{1}=: a=2.652 & w_{1}=1.137
\end{array}
$$

(cf, eg, Abramowitz and Stegun 1965, p 924). From (15) and (16) we have

$$
\begin{align*}
& f_{1}=f_{7}=\frac{1}{2 a^{2} w_{1}} \frac{M_{6}-\left(b^{2}+c^{2}\right) M_{4}+b^{2} c^{2} M_{2}}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)} \\
& f_{2}=f_{6}=\frac{1}{2 b^{2} w_{2}} \frac{-M_{6}+\left(a^{2}+c^{2}\right) M_{4}-a^{2} c^{2} M_{2}}{\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)} \\
& f_{3}=f_{5}=\frac{1}{2 c^{2} w_{3}} \frac{M_{6}-\left(a^{2}+b^{2}\right) M_{4}+a^{2} b^{2} M_{2}}{\left(a^{2}-c^{2}\right)\left(b^{2}-c^{2}\right)} \tag{38}\\
& f_{4}=\frac{1}{w_{4}} \frac{-M_{6}+\left(a^{2}+b^{2}+c^{2}\right) M_{4}-\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right) M_{2}+a^{2} b^{2} c^{2}}{a^{2} b^{2} c^{2}}
\end{align*}
$$

Suppose that $f_{k}>0, k=1, \ldots, 4$, and $f_{4}<1$. Then, substituting $B_{k}=-\ln f_{k}$ one obtains from (20)-(22):
$\lambda_{0}=B_{4}=-\ln f_{4}$
$\lambda_{2}=A^{-1}\left\{a^{4} b^{4}\left(a^{2}-b^{2}\right)\left(B_{3}-B_{4}\right)+b^{4} c^{4}\left(b^{2}-c^{2}\right)\left(B_{1}-B_{4}\right)-a^{4} c^{4}\left(a^{2}-c^{2}\right)\left(B_{2}-B_{4}\right)\right\}$,
$\dot{\lambda}_{4}=A^{-1}\left\{-a^{2} b^{2}\left(a^{4}-b^{4}\right)\left(B_{3}-B_{4}\right)-b^{2} c^{2}\left(b^{4}-c^{4}\right)\left(B_{1}-B_{4}\right)+a^{2} c^{2}\left(a^{4}-c^{4}\right)\left(B_{2}-B_{4}\right)\right\}$,
$\lambda_{6}=A^{-1}\left\{a^{2} b^{2}\left(a^{2}-b^{2}\right)\left(B_{3}-B_{4}\right)+b^{2} c^{2}\left(b^{2}-c^{2}\right)\left(B_{1}-B_{4}\right)-a^{2} c^{2}\left(a^{2}-c^{2}\right)\left(B_{2}-B_{4}\right)\right\}$,
where

$$
\begin{equation*}
A=a^{2} b^{2} c^{2}\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(a^{2}-c^{2}\right) \tag{39'}
\end{equation*}
$$

With respect to (37) the formulae (39) can be written in the form

$$
\begin{align*}
& \lambda_{0}=2.3637-\ln h_{4}, \\
& \lambda_{2}=\frac{1}{781}\left(426-7.4 \ln h_{1}+141 \ln h_{2}-1678 \ln h_{3}+1544 \ln h_{4}\right), \\
& \lambda_{4}=\frac{1}{781}\left(-11+13.8 \ln h_{1}-229 \ln h_{2}+820 \ln h_{3}-605 \ln h_{4}\right), \tag{40}\\
& \lambda_{6}=\frac{1}{781}\left(1.2-3.98 \ln h_{1}+30.2 \ln h_{2}-85.2 \ln h_{3}+59 \ln h_{4}\right),
\end{align*}
$$

where

$$
\begin{align*}
& h_{1}=M_{6}-3 \cdot 47 M_{4}+1.87 M_{2} \\
& h_{2}=-M_{6}+7.8 M_{4}-4 \cdot 68 M_{2} \\
& h_{3}=M_{6}-9.93 M_{4}+19.71 M_{2} \tag{41}\\
& h_{4}=-M_{6}+10.6 M_{4}-26.26 M_{2}+13.12 .
\end{align*}
$$

The inequalities $0<f_{k}, k=1,2,3$, and $0<f_{4}<1$ are equivalent to

$$
\begin{equation*}
0<h_{k}, \quad k=1,2,3, \quad 0<h_{4}<10.63 \tag{42}
\end{equation*}
$$

Two examples are given below in tables 3 and 4 . The moments are calculated for the lineshape $p(x)=Z^{-1} \exp \left(-\lambda x^{6}\right)$.

Table 3. $M_{2}=1.273, M_{4}=3.24, M_{6}=7.15$

	Exact	Approximate
$\lambda_{0}=\ln Z$	1.312	1.224
λ_{2}	0	0.70
λ_{4}	0	-0.146
λ_{6}	0.0156	0.0343

Table 4. $M_{2}=1.21, M_{4}=2.93, M_{6}=9.14$

	Exact	Approximate
$\hat{\lambda}_{0}$	1.286	1.552
λ_{2}	0	0.33
λ_{4}	0	-0.078
λ_{6}	0.0182	0.0202

4. Conclusions

An approximate method is given for calculating the parameters $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{2 n}$ of the most probable lineshape given moments $M_{1}, M_{2}, \ldots, M_{2 n}\left(M_{0}=1\right)$. Conversely, for a lineshape of the type $\exp \left(-\Sigma_{j=0}^{2 n} \lambda_{j} x^{j}\right)$ moments M_{1}, M_{2}, \ldots can be calculated via relations (20)-(25). In particular parameters $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{4}$, and $\lambda_{2}, \lambda_{4}, \lambda_{6}$ for M_{1}, M_{2}, M_{3}, M_{4} and M_{2}, M_{4}, M_{6} lineshapes are obtained. The results for M_{2}, M_{4} lines agree, in general, with those of Powles and Carazza. The differences do not essentially change the lineshape, and the method gives at least the qualitative features of the line. Note that there is no limit for n, so that the method can also be applied, for example in lattice dynamics, where even 100 or more moments can be calculated (cf Isenberg 1970).

References

Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
Ingarden R S 1973 Acta Phys. Polon. A 43 3-14
Ingarden R S and Urbanik K 1962 Acta Phys. Polon. 21 281-94
Isenberg C 1970 J. Phys. C: Solid St. Phys. 3 L179-82
Kossakowski A 1969 Bull. Acad. Polon Sci., Sér. Sci. Math. Astron. Phys. 17 263-7
Krylov V I 1967 Approximate Evaluation of Integrals (in Russian) (Moscow: Gosfizmatizdat)
Powles J G and Carazza B 1970 Proc. Int. Symp. on Electron and Nuclear Magnetic Resonance, Melbourne 1969
(New York: Plenum) pp 133-61

