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An information-theoretical lineshape : general case 

G Z Czajkowskit 
Institute of Physics, Nicholas Copernicus University, Torun, Poland 

Received 30 November 1972, in final form 1 February 1972 

Abstract. Following Powles and Carazza, the information-theoretical method is used to 
obtain the most probable spectral distribution given only a knowledge of a finite number of 
moments of the line. An approximate method is given to obtain Lagrange undetermined 
multipliers. Examples of application of the method are given. 

1, Introduction 

Powles and Carazza (1970) applied the information-theoretical method to the problem 
of the absorption lineshape in nuclear magnetic resonance. Assuming that a finite 
number of moments of the line is given they obtained a most probable lineshape in the 
form 

2n 

P(X) = 2-’ exp - I ,X~  , ( k = l  ) 
where x denotes the frequency, and 2 is the normalization constant 

2n 

Z = Z ( A l , .  . . , A,,) = [-+I exp( - A,xk) dx. (2) 
k = l  

I,,. . . , A,,, are Lagrange undetermined multipliers which can be calculated from the 
equation 

(3) 

where M ,  are moments of the line. The difficulty consists now in the calculation of the 
Lk’s from equation (3). Powles and Carazza gave a method for obtaining I ,  and A, for a 
symmetrical lineshape : 

p(x) = Z -  exp( - I,x2 - A,x4) (4) 
for M ,  and M ,  only known (in this case MI = M ,  = 0). In what follows we give an 
approximate method of calculation of the Ak’s for the general case of the distribution (l), 
that is for M , ,  M , , .  . . , M , ,  lines (n = 2 , 3 , .  . . ; for n = 1 one obtains the gaussian 
distribution). In particular, approximate formulae for I l  , I , ,  I , ,  I, for M M ,  , M ,  , M ,  
lines and I,, I,, I6 for M , ,  M , ,  M ,  lines are given. For M , ,  M ,  lines the results are 
compared with those of Powles and Carazza. 

t Now at lnstitut fur Theoretische Physik der Rheinisch-Westfalischen Technischen Hochschule Aachen, 
D-5100 Aachen, Templergraben, Germany. 

906 



An information-theoretical lineshape : general case 907 

2. Calculation of Lagrange undetermined multipliers 

Following Powles and Carazza we assume that a nuclear magnetic resonance absorption 
lineshape p(x) is a probability distribution in frequency x. The kth moment of the line- 
shape is defined as 

The line is called symmetric when all odd moments vanish (for the detailed physical 
discussion cf, eg, Powles and Carazza). Assume that a finite number of moments M, , . . . , 
M,, is known. There exists, in general, a set of distributions p(x) satisfying the relations 
( 5 )  : 

where 

p(x)dx = 1 . I + m  1- m 

s ( P K )  = - J- PdX)  In PdX)  dx = P E K  ( -  J-, F 4 x ) W d x ) .  

Mi = J-': xi exp( - zo Ljxj) dx 

w = : p(x):p(x) 2 0, i 
The set K will be called a macrostate. The notion of a macrostate was introduced in 
the so called information thermodynamics (cf Ingarden and Urbanik 1962, see also, eg, 
Kossakowski 1969, Ingarden 1973). Suppose that there exists a distribution pK(x) E K 
(called the most probable distribution or the representative distribution of K) such that 

+ m  + m  

(7)  

As is well known the distribution pK(x) (if it exists) has the form (1) with (2)  and (3 ) .  Now 
we calculate the Lagrange multipliers. Denoting M O  = 1 and Lo = In 2 we may rewrite 
the equations (3) and the normalization condition of p(x) in the form 

i = O , I ,  ..., 2n. 
2n 

(8) 

Now we make use of the well known quadrature formula. Let f(x) be a continuous 
function and assume that the integral J ? 2 exp( - x2)f(x) dx exists. Then 

where 

- CO < q < + CO, H,(x) are Hermite polynomials 

d" 
dx" 

H,(x) = (- 1)" ex'- e-x2, 

and x l ,  . . . , x, are zeros of the polynomial Hm(x) .  The coefficients A',") are tabulated (cf, 
eg, Krylov 1967, pp 141-2). Suppose that functions f(x),f'(x), . . . , f (2")(~)  are finite 
so that R(f) + 0 for m >> 1 .  For example, for m = 5 we have R(f) - 10-6f(10)(v). 
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Neglecting the term R(f) and substituting 

m 

M i  = C i k f k *  
k = l  

The function f ( x )  in (13) has at most n maxima. Our approximation will be good for 
f ( x )  attaining their maximal values in the interval ( - x m ,  xm). If m = 2n + 1, then (14) 
becomes a system of 2n + 1 linear equations for 2n + 1 unknowns fi , . . . , f2,,+ which 
can be easily solved by the Cramer's formulae, namely 

where dk  denotes the determinant 

1 1 . . .  1 1 1 . . .  1 

x 2  . . . x k - l  M l  X k + l * * . X 2 n + l  dk  = 

X:' X s " . . . X z ! ! l  M 2 ,  x k + l  2 n  . . .  X z n + 1  2 n  

and VZn+ is the Vandermond determinant 

2 n +  1 

I / Z n + l  = n ( X k - x l ) .  
k,l= 1 
k >  1 

Note that all f k ' s  (k = 1,.  . . , 2 n  + 1) have to be positive with respect to (13), so that the 
method referred to can be applied if the prescribed moments M I , .  . . , M 2 ,  satisfy the 
relations 

d k  = d k ( M l , .  . . , Mzn)  > 0. (18) 

Suppose it is satisfied. Then, substituting Bk = - lnf,, we obtain a set of linear equa- 
tions for the Lagrange multipliers I,,  I , ,  . . . , A Z n :  

2 n  

B k  = I j X i ,  k = 1, . . . ,  2n+1. 
j = O  

The solution of (19) has the form 

(19) 

j = O , l ,  . . . ,  2n, A. = -, Aj 
v 2 n +  1 

I 



An information-theoretical lineshape : general case 909 

where A j  denotes the determinant 

1 x1 x; . . .  xj-l 1 B ,  xi" . . .  x:n 

1 x2 x: . . .  xj-l 2 B 2  xi" . . . x;n 

1 ~ 2 n + 1  x2n+1 * * .  Z n + l  B2n+1 4 t : 1 . ; . ~ 2 n + l  

A .  = 

2 x j - l  2 n  

For the polynomial H z n +  l(x), x,+ = 0, so that (20) yields 

,lo = 1nZ = Bn+l = - lnf,,,. 

One can calculate the Lagrange multipliers &, E., , . . . , iZn- from (20) and the remaining 
A z n -  and izn from the equations 

2 n  2 n  

which can be easily verified by integration by parts. In particular, for symmetric line- 
shapes one obtains 

2A2M2 = 1 

4A4M4+2d2M2 = 1 

6&M6+4i4M4+2i2M2 = 1 

for n = 1, 

for n = 2, 

for n = 3, etc. 

The last two relations were given by Powles and Carazza (cf equations (22) and (52) of 
Powles and Carazza 1970). Integrating by parts the expression 

one obtains the recurrence formula 

3. Examples 

For illustration of the method consider two examples. 

3.1. M ,  , M ,  , M,, M4 lineshape 

Here we have n = 2 and 

x3 = 0 

~4 = - x Z  := b = 0.959 

A3 = 0.945 

A2 = A4 = 0.393 

A1 = A, = 0.020 x5 = -xl  := a = 2.02 
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and 

A ,  exp(x:) = : w1 = 1.282, A ,  exp(xi) = : w2 = 0.987, (26) 

(cf, eg, Krylov 1967, p 141, see also Abramowitz and Stegun 1965, p 924). From (15) one 
obtains 

(M4- b2M2)-a(M3 -b2M1)  
fl = w12a2(a2 - b2) 

7 

( a 2 M 2 - M 4 ) + b ( h f 3 - a 2 M , )  
w22b2(a2 - b2)  f 2  = 9 

M,- (a2  + b2)M2 +a2b2 
f 3  = a2b2A,  > 

(a%, - M,)  - b(M3 - a 2 M , )  

w22b2(a2 - b2) 
f4 = 2 

Suppose that the inequalities fk > 0, k = 1,. . . , 5 ,  and f3 e 1, are satisfied. Denoting 
B, = -In fk one obtains from (20)-(22) the following formulae for I , ,  A,, . . . , A4 : 

I, = B ,  = - In f3,  

A, = 
-a3(& - B4) + b3(B, - B , )  

2ab(a2 - b2)  9 

Substituting the values (26) one obtains 

A, = 1.266 - In h , ,  

A, = -{ -8.24(1n h,-  In h2)+0.88(ln h ,  - In hl)},  1 
12.24 

1 
23.7 

1 

A 2  = -{2(6.17+ 15.8 In h3)-  16.65(1n h 2 +  In h4)+045(ln h,+ In h,)} 

A 3  = ,,,,{2.02(ln h, - In h2)-0.96(ln h,  - In hl)},  

1 
A - -{2(0~08-3~161nh3)+4~08(lnh2+ In h,)-0.92(1nh1+ lnh,)}, - 23.7 
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where 

h, = M,-2.02M,-0.92M2+l.86M1, 

h2 = - M4 +0.96M3 +4.08M, - 3.92M1, 

h3 = M4-5M2+3*75, 

h4 = - M4 - 0.96M3 + 4.08M, + 3.92111 ,, 
h ,  = M,+2*02M,-0*92M,- 1*86M1. 

(29’) 

The conditions 0 < fk and f3 < 1 are equivalent to 

For symmetric lineshapes M, = M, = 0, so that h, = h, and h, = h4 and the relations 
(29) take the form 

A. = 1.266- In h, , 

A, = 1, = 0, 

1 
11.85 A, = -(6.17+0-85 In h, - 16.65 In h, + 15.8 In h,), 

1 
11.85 A, = -(0.08-0.92 In h, +4.08 In h, - 3.16 In h,), 

where 

h, = M4-0.92M2; h2 = -M4+4.08M,. (31’) 

We can also use the relations (23) or (24), respectively. We tested our method for some 
M,, M, and M,,  M,, M,, M4 lines. The results are given in table 1 .  The exact values 
for A, and A4 were obtained by the method of Powles and Carazza. Namely 

A - 1 2  
4 - 2Y A, = X Y ,  

where 

M2 
2M4 

y = -[ - x +  {x’ + 2(M4/M:)}”2]. 

Table 1. Coefficients Io, I , ,  I, for some M ,  , M, lineshapes. 

10 1 2  1 4  x = I,/(2I4)”2 

M ,  M, Exact Approx. Exact Approx. Exact Approx. Exact Approx. 

1 1 1.79 1.43 1.88 -0.75 -1.14 0.35 0.46 -0.9 - 1.2 
2 1 1.93 1.29 1.65 -0.42 -0.89 0.24 0.36 -0.6 - 1 
3 1 2.51 1.181 1.043 0.228 0.281 0.041 0.054 1 0.7 
4 1.24 3.50 1.205 1,140 0.106 0.106 0.064 O M 4  0.3 0.3 
5 1.22 3.50 1.219 1.126 0.150 0.200 0.045 0.036 0.5 0.7 
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The parameter x was obtained from the relation 

D,(x) being the so called parabolic cylinder functions : 

(cf also Powles and Carazza 1970, equation (32)). Some values of g(x) are given in 
table 2. 

Table 2 

X 0 0.1 0.2 0.3 0.4 0.5 

g(x) 2.19 2.23 2.29 2.30 2.33 2.35 
g(-X) 2.19 2.15 2.10 2.07 2.02 1.98 

X 0.6 0.7 0.8 0.9 1.0 1 .1  
~~ 

g(x) 2.40 2.43 2.46 2.48 2.51 2.53 
g(-x)  1.93 1.88 1.84 1.79 1.75 1.70 

The exact value for A. was found from the relation 

The functions D,(x) are tabulated (cf, eg, Abramowitz and Stegun 1965, p 686). 
For the case M ,  , M ,  , M ,  , M ,  lineshape we considered the shape 

Ax) = Z - '  exp(-A(x4-2x3+1~5x2-O~5x)} - exp(-A(~-0.5)~}. (34) 

We took I = 0.12. Then 

Io = 1.125, A, = -0.05, 1 2  = 0.18, A3 = -0.24, A, = 0.12 

and 

M, = 0.5, M 2  = 1.25, M 3  = 1.63, M4 = 3.64. (35) 

From (29) we obtain the approximate values 

10 = 1,135, 11 = -0.058, 1 2  = 0.24, A3 = -0.166 I4 = 0.11. 

3.2. M Z , M 4 , M 6  lineshape 

Suppose that moments M , ,  M,, M ,  of the line are given and M ,  = M 3  = M ,  = Q 
The most probable lineshape will have the form 

p(x) = Z-' exp(-A2x2-14x4-&x6) = exp(-&,-A,x2-A4x4-16x6). (36) 
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We calculate the parameters Ao,A2,A4,& using the method of 82. Here we have 
n = 3, that is, m = 2n+  1 = 7 and 

x4 = 0 A ,  = 0.810 

~5 = - x j  = : c = 0.816 W ,  = 0.829 

~6 = -x,  = b = 1.674 ~2 = 0.897 

X, = -XI = : U  = 2,652 w1 = 1.137 

(cf, eg, Abramowitz and Stegun 1965, p 924). From (15) and (16) we have 

1 M6 - (b2 + c2)M4 + b2c2M2 
f1 = f7 = 2a2w, ( a 2 - b 2 ) ( a 2 - C 2 )  ' 

f3 = f 5  = 2czw, 

f 4  = 6 

1 - M 6 + ( U 2 + ~ 2 ) M 4 - ~ 2 ~ 2 M 2  
(a2-b2)(b2-c2  ) 

(a2 - c2)(b2 - c2 ) '  

f 2  = f 6  = 9 

1 M6 - (a2 + b2)M4 + a2b2M, 

1 -M6 + (a2 + b2 + c2)M4 - (a2b2 + a2c2 + b2c2)M,  + a2b2c2 
a2b2c2 

(37) 

Suppose that f, > 0, k = 1,. . . ,4 ,  and f4 < 1. Then, substituting B, = -lnfk one 
obtains from (20)-(22) : 

io = B, = -lnf4 

i2 = A-1{a4b4(a2-b2)(B3 -B4)+b4c4(b2-c2)(B1 -B4)-a4c4(a2-c2)(B,-B4)}, 
(39) 

i4 = A - ' {  -a2b2(a4-b4)(B3 -B4)-b2c2(b4-c4)(B1 -B4)+a2c2(a4-c4)(B,-B4)}, 

1 6  = A - ' { a 2 b 2 ( a 2 - b 2 ) ( B 3  -B4)+b2C2(b2-CZ)(B1 - B 4 ) - U 2 C 2 ( U 2  -C2)(B2-B4)}, 

where 

A = a2b2c2(a2 - b2)(b2 - c2)(a2 - 2). (39') 

With respect to (37) the formulae (39) can be written in the form 

Lo = 23637 -In h,, 

i., = h(426-7 .4  In h ,  + 141 In h, - 1678 In h, + 1544 In h4), 

1, = A( - 11 + 13.8 In h ,  -229 In h,  +820 In h,  -605 In h,), 

& = k ( 1 . 2 -  3.98 In h ,  + 30.2 In h, - 85.2 In h, + 59 In h4), 

(40) 

where 

h1 = M6 - 3.47M4 + 1*87M2, 

h2 = -M6+7.8M4-4*68MZ, 

h3 = M6-9*93M4+ 19.71M2, 

h4 = -M6+ 10.6M,-26.26M,+ 13.12. 
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The inequalities 0 < fk, k = 1,2,3, and 0 < f4 < 1 are equivalent to 

< hk, k = 1,2,3, 0 < h, < 10.63. (42) 

Two examples are given below in tables 3 and 4. The moments are calculated for the 
lineshape p ( x )  = Z -  exp( - Ax6). 

Table 3. M 2  = 1.273, M4 = 3.24, M ,  = 7.15 

Exact Approximate 

I., = I n Z  1.312 1,224 
A 2  0 0.70 
1 4  0 -0.146 
I6 0.01 56 0.0343 

Table4. M 2  = 1.21, M ,  = 2.93, M ,  = 9.14 

~~ ~ ~ 

Exact Approximate 

1, 1,286 1.552 
1 2  0 0.33 
i, 0 - 0.078 
I 6  0.0182 0.0202 

4. Conclusions 

An approximate method is given for calculating the parameters I , ,  A , ,  . . . , I," of the 
most probable lineshape given moments M I ,  M , ,  . . . , MZn ( M O  = 1). Conversely, for 
a lineshape of the type exp( - Z:f!!,Ijxj) moments M ,  , M , ,  . . . can be calculated via 
relations (20)-(25). In  particular parameters A,, A I , .  . . , A,, and I , ,  I,, for M , ,  M , ,  
M , ,  M ,  and M , ,  M , ,  M6 lineshapes are obtained. The results for M , ,  M ,  lines agree, 
in general, with those of Powles and Carazza. The differences do not essentially change 
the lineshape, and the method gives at least the qualitative features of the line. Note 
that there is no limit for n, so that the method can also be applied, for example in lattice 
dynamics, where even 100 or more moments can be calculated (cf Isenberg 1970). 
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